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Part 1: Introduction to the Domain 
Generalization problem



Beery et al. "Recognition in terra incognita." ECCV 2018



source

https://twitter.com/pmddomingos/status/1515759354275762180?s=20


Background (1)

Supervised statistical machine learning methods aim at learning a function

which provides an estimate/probabilities    of the true value of the 
label(s)/target(s)   , given a previously unseen data sample

In our previous example,  



Background (2)

Let          on               be the distribution of the training data. A fundamental 
assumption of most ML methods is that the unseen (test) data follow the same 
distribution as the training data (i.i.d. assumption).

However, in our example:

(1): Cows + grass (2): Cows + beach



Domains

Let's call each          ,                            a domain

Example domains:

● Cows with grass
● Cows with beach
● Wolves with snow
● Wolves with gravel



Domains

Example domains:

● Cows with grass
● Cows with beach
● Wolves with snow
● Wolves with gravel

Problem 1: How can we train a model to correctly classify samples 
from different domains?

Solution 1: Just train a model with pictures from both domains

Let's call each          ,                            a domain



Domains

Example domains:

● Cows with grass
● Cows with beach
● Wolves with snow
● Wolves with gravel

● Dataset distribution can be device-specific
○ X-rays of device A
○ X-rays of device B

● Dataset distribution may vary across 
individuals

○ Blood sample from person 1
○ Blood sample from person 2

● Privacy / legal / technical restrictions

Problem 2: In many real-world scenarios it is difficult to have access 
to large volumes of data from all domains during training

Let's call each          ,                            a domain



Transfer learning (for the same labels)

Given a model trained on a source domain:  

Train a model on the target domain:           by performing a (hopefully small) 
number of training iterations

Requirements:

● Large numbers of labeled data on source 
domain

● Availability of labeled data on target domain

 



Domain adaptation

Train a model on the source domain(s): 

Use unlabeled data (or very small number of labeled data) to adapt the model to 
the target domain,          

Requirements:

● Unlabelled data (or small number of 
labeled data) from the target domain

 Image from: Zhu, J. et al. "Patch-Mix Transformer for Unsupervised 
Domain Adaptation: A Game Perspective.", CVPR 2023



Domain Generalization (1)

In this scenario we don't have access to any data from the target domain during 
training.

Our goal is to train a model using data from the source domain(s) that are effective 
in the unseen target domain(s)

Image:  Zhang et al., NICO++: Towards Better Benchmarking for Domain Generalization 
https://github.com/xxgege/NICO-plus 

https://github.com/xxgege/NICO-plus


Domain Generalization (2)

● Multi-source DG: Multiple training domains, 
access to domain labels (we know the domain 
of each training sample)

● Single-source DG: Single training domain 
and/or no-access to domain labels

Sample images from the PACS dataset

Observation: 

● Some features are common (invariant) 
across domains

Goal: Learn the invariant features, not 
spurious domain features



Overview

This taxonomy is a variation / extension of the ones on Wang, J, et al. "Generalizing 
to unseen domains: A survey on domain generalization." IEEE Transactions on 
Knowledge and Data Engineering (2022), and Zhou, Kaiyang, et al. "Domain 
generalization: A survey." IEEE Transactions on Pattern Analysis and Machine 
Intelligence (2022).



Part 2: Overview of representative DG 
methods



Data manipulation

This taxonomy is a variation / extension of the ones on Wang, J, et al. "Generalizing 
to unseen domains: A survey on domain generalization." IEEE Transactions on 
Knowledge and Data Engineering (2022), and Zhou, Kaiyang, et al. "Domain 
generalization: A survey." IEEE Transactions on Pattern Analysis and Machine 
Intelligence (2022).



Data Augmentation CrossGrad: Cross-Gradient

Shankar et al. Generalizing across Domains via Cross-Gradient 
Training. ICLR 2018.

Adversarially 
augment data via 
gradient training to 
generate data that 
share the same 
label y but different 
domain label d.

RandConv: Random Convolutions

RandConv uses 
multi-scale 
random-convolutions to 
generate images with 
random texture while 
maintaining global 
shapes

Xu et al. Robust and Generalizable Visual Representation Learning 
via Random Convolutions. ICLR 2021.



Data Generation

MixStyle: Mix the styles of training 
instances in each mini-batch to 
increase the domain diversity of 
the source domains

Mixup: Improve model robustness 
by training the network on convex 
combinations of pairs of examples 
and their labels.

Zhou et al. “Domain generalization with mixstyle”. ICLR 2021

source

Zhang et al. “Mixup: Beyond empirical risk minimization". 
arXiv 2017

Style transfer: Applying the AdaIN 
transformation to features can 
lead decoders to change the style 
of the input

https://towardsdatascience.com/enhancing-neural-networks-with-mixup-in-pytorch-5129d261bc4a


Representation learning

This taxonomy is a variation / extension of the ones on Wang, J, et al. "Generalizing 
to unseen domains: A survey on domain generalization." IEEE Transactions on 
Knowledge and Data Engineering (2022), and Zhou, Kaiyang, et al. "Domain 
generalization: A survey." IEEE Transactions on Pattern Analysis and Machine 
Intelligence (2022).



Feature Disentanglement

SagNet: Style Agnostic Networks

DDG: Disentanglement-constrained DG

Zhang et al. “Towards Principled Disentanglement for Domain 
Generalization”. CVPR 2022

Nam et al. "Reducing domain gap by reducing style bias". CVPR 
2021.

SagNets disentangle style encodings from class 
categories to prevent style biased predictions and 
focus more on the contents.

DDG seeks to minimize the semantic difference of 
the generated samples from the same class while 
diversifying the variation across source domains.



Domain Invariant Representation Learning

DSU: Domain Shifts with Uncertainty

Li et al. “Uncertainty modeling for Out-of-Distribution Generalization” ICLR 2022

MatchDG: Build Representations via Causal Matching 

Mahajan et al. “Domain Generalization Using Causal Matching.” PMLR 2021

Under the assumption that the feature statistics of each source 
data distribution follows a multivariate Gaussian distribution, DSU 
models the uncertainty of domain shifts with synthesized feature 
statistics during training.

MatchDG utilizes contrastive learning to build a representation 
such that inputs sharing the same causal features are closer to 
one another.



Regularization Strategies
RSC: Representation Self-Challenging CORAL: Correlation Alignment FISHR: Regularization with Fisher Information

RSC mutes the feature representations 
associated with the highest gradient, such 
that the network is forced to predict the labels 
through other features

CORAL focuses on minimizing the distance 
between the second-order statistics 
(covariances) between domains. 

FISHR introduces a regularization term that 
matches the domain-level variances of 
gradients across training domains 

Sun et al. “Deep CORAL: Correlation Alignment for 
Deep Domain Adaptation”. ECCV 2016

Huang et al. “Self-Challenging Improves 
Cross-Domain Generalization”. ECCV 2020

Rame et al. "Fishr: Invariant gradient variances for 
out-of-distribution generalization." PMLR, 2022.



Learning algorithms

This taxonomy is a variation / extension of the ones on Wang, J, et al. "Generalizing 
to unseen domains: A survey on domain generalization." IEEE Transactions on 
Knowledge and Data Engineering (2022), and Zhou, Kaiyang, et al. "Domain 
generalization: A survey." IEEE Transactions on Pattern Analysis and Machine 
Intelligence (2022).



Meta-Learning

MLDG: Meta-Learning for DG

Li et al. Learning to generalize: Meta-learning for 
domain generalization. AAAI 2018.

MetaReg: Meta-Learning for regularization

Balaji et al. "Metareg: Towards domain generalization using 
meta-regularization". NIPS 2018.

In each mini-batch a loss is computed based on 
evaluation on meta-test domains. This meta-test 
evaluation simulates testing on new domains with 
different statistics, thus improving robustness.

The goal is to learn a regularizer model from 
multiple domain-specific networks in order to 
update the parameters of the base classifier.  



Ensemble Methods
MIRO: Mutual Information Regularization with Oracle SIMPLE: Specialized Model-Sample Matching

Li et al. "SIMPLE: Specialized Model-Sample Matching for 
Domain Generalization." ICLR 2023.

Cha et al. "Domain generalization by mutual-information 
regularization with pre-trained models." ECCV 2022.

In MIRO, a large pre-trained model is used as an 
“Oracle” model and is leveraged to guide a 
classifier by maximizing the Mutual Information 
between their representations. 

SIMPLE utilizes a pool of fixed pretrained models 
and selects the best subset for each downstream 
task/dataset. 



Domain Adversarial Learning

MMLD: Mixture of Multiple Latent Domains

MMLD iteratively assigns pseudo 
domain labels by clustering domain 
discriminative features extracted from 
lower layers of the feature extractor, 
and trains the domain-invariant feature 
extractor via adversarial learning.

Matsuura et al. "Domain generalization using a mixture of multiple latent domains." AAAI 2020.



Self-Supervised Learning

SelfReg: Self-Supervised Contrastive Regularization PCL: Proxy-Based Contrastive Learning

The PCL paper indicates that aligning positive 
sample-to-sample pairs hinders the model generalization 
and proposes aligning proxy-to-sample representations.

SelfReg maps the latent representations of same- 
class samples close together to learn 
domain-invariant properties.

Kim et al. "Selfreg: Self-supervised contrastive regularization 
for domain generalization". ICCV 2021.

Yao et al. "Pcl: Proxy-based contrastive learning for domain 
generalization". CVPR 2022.



Part 3: Datasets and Benchmarks



DG Applications & Datasets

There are several applications and datasets which can be used for evaluating DG 
algorithms. To name a few:

Object Recognition
- PACS
- VLCS
- OfficeHome
- DomainNet
- WILDS
- TerraInc
- NICO++

PA
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Action Recognition
- IXMAS
- UCF-HMDB

Sentiment Classification
- Amazon Reviews

IX
M

A
S

M
R
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eg

Medical Imaging
- Multi-site Prostate MRI Seg
- Chest X-rays

Reinforcement Learning
- Coinrun
- OpenAI Procgen 



DG Benchmarks & Codebases (1)

Lately, the DomainBed benchmark for domain generalization image classification 
has been generally recognized and used by researchers.

The currently available datasets are:

● RotatedMNIST 
● ColoredMNIST 
● VLCS 
● PACS 
● Office-Home 
● TerraIncognita 
● DomainNet 
● A SVIRO 
● WILDS FMoW 
● WILDS Camelyon17 
● Spawrious 

Gulrajani et al. "In search of lost domain generalization." arXiv 2020.
Code: https://github.com/facebookresearch/DomainBed

https://github.com/facebookresearch/DomainBed


Sidenote: Example of method outpeforming ERM on average



WILDS is a collection of benchmark 
datasets that represent distribution 
shifts faced in the wild.

DG Benchmarks & Codebases (2)

WILDS provides the following datasets:
● iWildCAM 
● Camelyon17
● VLCS 
● RxRx1
● OGB-MolPCBA
● GlobalWheat
● DomainNet 
● CivilComments
● FMoW 
● PovertyMap
● Amazon
● Py150 Koh et al. "Wilds: A benchmark of in-the-wild distribution shifts." PMLR 2021.

Code: https://github.com/p-lambda/wilds/

https://github.com/p-lambda/wilds/


NICO++  is specifically 
designed for OOD 
(Out-of-Distribution) image 
classification. It simulates a 
real world setting that the 
testing distribution may induce 
arbitrary shifting from the 
training distribution

DG Benchmarks & Codebases (3)

Zhang et al. "NICO++: Towards better benchmarking for domain generalization." CVPR 2023.
Code: https://github.com/xxgege/NICO-plus

https://github.com/xxgege/NICO-plus


DG Benchmarks & Codebases (4)

Building on DomainBed, additional benchmarks have been proposed.

OoD-Bench adopts similar datasets to 
DomainBed and splits the benchmark into 
two dimensions, focusing on data suffering 
from either diversity or correlation shift.

DeepDG is proposed as a simplified version 
of DomainBed with additional features.

Specifically it:

● Avoids huge hyperparameter tuning
● Provides a more friendly interface and
● Has better customization

Ye et al. "Ood-bench: Quantifying and understanding two dimensions 
of out-of-distribution generalization." CVPR 2022.
Code: https://github.com/ynysjtu/ood_bench

J. Wang et al., "Generalizing to Unseen Domains: A Survey on 
Domain Generalization". IEEE TKDE 2022
Code: https://github.com/jindongwang/transferlearning

https://github.com/ynysjtu/ood_bench
https://github.com/jindongwang/transferlearning


Part 4: Application to biomedical signals and 
the BioDG benchmark



Domain Generalization in Biosignal Classification

Up until now, we have presented an 
abundance of methods / datasets / 
benchmarks for the DG problem 
regarding images.

The DG problem is somewhat 
under-researched in other settings such 

as Biosignal Classification.

Distributional shifts can occur due to:

● Different hospital equipment
● Different or evolving hospital 

procedures
● Different testing environments
● Different physiology of patients



Biosignal Classification in General

We consider domain generalization for the 12-lead 
ECG and 62-channel EEG classification task and 
aim to improve the ability of a model 
 to detect domain-invariant features of a class.

62-channel EEG.  source12-Lead ECG.  source

https://bcmi.sjtu.edu.cn/home/seed/
https://www.cablesandsensors.eu/pages/12-lead-ecg-placement-guide-with-illustrations


Visualizations of 12-lead ECG and 62-channel 
EEG signals.

Typical 12-lead electrocardiogram. Spike and wave discharges monitored EEG



The BioDG Benchmark (1)

We introduce a novel DG open-source 
evaluation benchmark, namely BioDG 
for the biosignal classification setting.

Specifically, BioDG:

● Proposes a DG setup for ECG 
and EEG classification, using 
datasets from PhysioNet and 
SEED

● Adapts state-of-the-art image DG 
algorithms to 1D signal 
classification and

● Provides researchers with the 
means to pour further research in 
biomedical DG.

The BioDG benchmark
Ballas and Diou. “Towards Domain Generalization for ECG and EEG
Classification: Algorithms and Benchmarks.”, IEEE TETCI 2023
Code: https://github.com/aristotelisballas/biodg

https://physionet.org/content/challenge-2020/1.0.1/
https://bcmi.sjtu.edu.cn/home/seed/
https://github.com/aristotelisballas/biodg


The BioDG Benchmark (2)

For the DG setup, we used publicly 
available datasets from the PhysioNet 
(ECG) and SEED (EEG) repositories.

ECG

We used datasets from 4 different sources:

● CPSC, CPSC Extra
● G12EC
● INCART
● PTB, PTB-XL

The ECG signals are multi-class and 
multi-label (24 labels).

Task: Disease prediction

EEG

We used the datasets from 3 different 
populations:

● SEED-CHI
● SEED-FRA
● SEED-GER

The EEG signals are multi-class (3 labels) 
problem.

Task: Emotion classification
Zheng et al, "Investigating Critical Frequency Bands and Channels for EEG-Based Emotion 
Recognition with Deep Neural Networks".  IEEE TAE 2015.

Alday et al. "Classification of 12-lead ecgs: the physionet/computing in cardiology challenge 
2020." Physiological measurement 2020.



The BioDG Benchmark (3)

We also propose an alternative architecture 
to tackle DG in 1D biosignal classification, 
which utilizes representations from multiple 
intermediate layers of a backbone ResNet 
model.

The BioDG baseline models
Ballas and Diou. “Towards Domain Generalization for ECG and EEG
Classification: Algorithms and Benchmarks.”, IEEE TETCI 2023
Code: https://github.com/aristotelisballas/biodg

https://github.com/aristotelisballas/biodg


The BioDG Benchmark (4)

BioDG provides evaluation metrics for both 
Intra-Distribution and Out-of-Distribution data splits.

ECG Classification Results EEG Classification Results

Clearly, we have a 
long way to go.



Some of our other works

Ballas, Aristotelis, and Christos Diou. "CNNs with Multi-Level 
Attention for Domain Generalization." ICMR 2023.

Ballas, Aristotelis, and Christos Diou. "Multi-Scale and 
Multi-Layer Contrastive Learning for Domain Generalization" 
Under Review at IEEE TAI, 2023.

Ballas, Aristotelis, and Christos Diou. 
"CNN Feature Map Augmentation for 
Single-Source Domain Generalization." 
BDS 2023.

Ballas, Aristotelis, and Christos 
Diou. "Multi-layer Representation 
Learning for Robust OOD Image 
Classification." SETN 2022. Presented on Wednesday.



Conclusions



Recap



Future directions

● DG remains an open problem
○ Effectiveness of methods remains low compared to training with i.i.d. data

● Applies to several application areas 
○ Many of them still unexplored

● Several subproblems emerge 
○ Federated DG

● Several links to model explainability, model testing / assessment of robustness and bias



Thank you!

https://bds-dgtutorial.github.io/ 

https://bds-dgtutorial.github.io/
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